The RIEGL miniVUX-1UAV is an extremely lightweight airborne laser scanner, designed specifically for integration with UAS/UAV/RPAS.

The small and sophisticated design of the stable aluminum housing offers various integration possibilities with platforms that offer restricted space or payload capabilities. The 360° field of view allows complete acquisition of the environment.

An easy-to-remove SD card for data storage, and/or the option for streaming the scan data via LAN-TCP/IP interface, in combination with the modest power consumption of the scanner, enable straightforward integration with most UAS/UAV/RPAS types.

The RIEGL miniVUX-1UAV makes use of RIEGL’s unique Waveform-LiDAR technology, allowing echo digitization and online waveform processing. Multi-target resolution is the basis for penetrating even dense foliage.

As a further special feature, the wavelength is optimized for the measurement of snowy and icy terrain.

In addition to the stand-alone version of the miniVUX-1UAV, RIEGL also offers fully-integrated solutions.

Typical applications include
- Agriculture & Forestry
- Glacier and Snowfield Mapping
- Archeology and Cultural Heritage Documentation
- Construction-Site Monitoring
- Landslide Monitoring

The RIEGL miniVUX-1UAV is very compact & lightweight (1.55 kg / 3.4 lbs) with a 360° field-of-view. The robust aluminum housing, ready to be mounted on multi-rotor, rotary-wing, and fixed-wing UAVs, makes use of RIEGL’s unique echo signal digitization and online waveform processing. It offers multiple target capability up to 5 target echoes per laser shot, a scan speed up to 100 scans/sec, and a measurement rate up to 100,000 measurements/sec. It also features a mechanical and electrical interface for IMU mounting and is exceptionally well suited to measure in snowy and icy terrains. It is user-friendly, with application- and installation-oriented solutions for integration.

Visit our website www.riegl.com
The following conditions are assumed for the Operating Flight Altitude AGL:

- target size ≥ laser footprint
- average ambient brightness
- operating flight altitude given at a FOV of +/-45°

Please contact sales@riegl.com to get more detailed information.

RIEGL miniVUX-SYS System Integration Options

Besides of the stand-alone miniVUX-1UAV LiDAR engine, RIEGL offers also system solutions, combining the miniVUX-1UAV with IMU/GNSS systems of different performance and of different form factors as well as optional RGB camera systems. Additionally, a special add-on to the miniVUX-SYS allows for straightforward integration with your multi-rotor UAV, e.g. a DJI Matrice M600.

RIEGL miniVUX-1UAV with APX-15 UAV
- IMU/GNSS unit integrated with LiDAR engine
- total weight approx. 2 kg
- interfaces for up to 2 cameras
- suited for integration into fixed-wing UAVs

RIEGL miniVUX-1UAV with APX-20 UAV
- higher-grade IMU/GNSS unit partly integrated with LiDAR engine
- total weight approx. 2.5 kg
- interfaces for up to 2 cameras
- suited for integration into all types of UAVs

RIEGL Integration Kit 600
- add-on to the miniVUX-SYS coming with shock-absorbing mounting-kit, power supply module and cabling
- total weight approx. 0.7 kg (without sensor and camera)
- suited for integration into multi-rotor UAVs

Please contact sales@riegl.com to get more detailed information.

1) See technical details in the corresponding Applanix datasheet.
RIEGL miniVUX®-1UAV Camera Options

RIEGL miniVUX-1UAV LiDAR Sensor equipped with APX-15 UAV

- with two Sony Alpha 6000 cameras (oblique mount)
- with Nadir-looking camera e.g. Sony Alpha 6000 camera or Sony Alpha 7R III

RIEGL miniVUX-1UAV LiDAR Sensor equipped with APX-20 UAV

- with two Sony Alpha 6000 cameras (oblique mount)
- with Nadir-looking camera e.g. Sony Alpha 6000 camera or Sony Alpha 7R III

1) See technical details in the corresponding Applanix datasheet
Technical Data RIEGL miniVUX®-1UAV

Class 1 Laser Product according to IEC 60825-1:2014

The following clause applies for instruments delivered into the United States: Compliance to CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed.3, as described in Laser Notice No. 56, dated May 8, 2019.

Range Measurement Performance

Measuring Principle
- time of flight measurement, echo signal digitization, online waveform processing

Laser Pulse Repetition Rate \(PRR \)

<table>
<thead>
<tr>
<th>Max. Measuring Range</th>
<th>100 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural targets (\rho \geq 20 %)</td>
<td>170 m</td>
</tr>
<tr>
<td>natural targets (\rho \geq 60 %)</td>
<td>290 m</td>
</tr>
<tr>
<td>natural targets (\rho \geq 80 %)</td>
<td>330 m</td>
</tr>
</tbody>
</table>

Typ. Operating Flight Altitude AGL

| natural targets \(\rho \geq 20 \% \) | 100 m (330 ft) |
| natural targets \(\rho \geq 60 \% \) | 160 m (525 ft) |

Max. Number of Targets per Pulse

3 m

3 m

15 mm

10 mm

100 kHz

100 000 meas./sec. \((@ 100 \text{ kHz} \text{ PRR} \& 360° \text{ FOV})\)

for each echo signal, high-resolution 16 bit intensity information is provided near infrared

1.6 x 0.5 mrad

160 mm x 50 mm @ 100 m

5)

6)

7)

8)

9) One sigma @ 50 m range under RIEGL test conditions.

8) Measured at 50% peak intensity, 1.6 mrad corresponds to an increase of 160 mm of beam diameter per 100 m distance.

Minimum Range
- 3 m

Accuracy
- 15 mm

Precision
- 10 mm

Laser Pulse Repetition Rate
- 100 kHz

Max. Effective Measurement Rate
- 100 000 meas./sec. \((@ 100 \text{ kHz} \text{ PRR} \& 360° \text{ FOV})\)

Scanning Mechanism
- rotating mirror

Field of View
- up to 360°

Scan Speed
- 10 - 100 revolutions per second, equivalent to 10 - 100 scans/sec

Angular Step Width
- \(0.05° \leq \Delta \theta \leq 0.5°\) between consecutive laser shots

Angle Measurement Resolution
- 0.001°

Interfaces

Configuration, Scan Data Output & Communication with External Devices
- 2 x LAN 10/100/1000 Mbit/sec
- WLAN IEEE 802.11 a/b/g/n
- Serial RS232 interface for data string with GNSS-time information, TTL input for 1PPS synchronization pulse.
- Power Output 10 V DC, max. 4.5 W

General IO & Control
- 2 x TTL input/output \(^{10}\), 1 x Remote on/off
- 2 x USB 2.0, Trigger, Exposure \(^{10}\)

Memory Card Slot
- for SDHC/SDXC memory card 32 GByte (can be upgraded to 256 GByte)

Serial Interface to External Devices
- SPI (Serial Peripheral Interface) \(^{9}\)

Power Supply Input Voltage / Consumption
- 11 - 34 V DC / typ. 18 W @ 100 scans/sec

Main Dimensions (L x W x H) / Weight
- 243 x 111 x 85 mm / approx. 1.6 kg
- 243 x 99 x 85 mm / approx. 1.55 kg

Without Cooling Fan
- max. 80 % non condensing @ 31°C

IP64, dust and splash-proof
- -10°C up to +40°C (operation) / -20°C up to +50°C (storage)

General Technical Data

- Continuous operation at ambient temperature of \(\geq 30°C \pm 86°F\) requires a minimum amount of air flow of approx. 3 m/s. For applications where a 3 m/s air flow along the cooling fins cannot be guaranteed, the cooling fan has to be used.

Footnotes:

1) Rounded values.

2) Typical values for average conditions. Maximum range is specified for flat targets with size in excess of the laser beam diameter, perpendicular angle of incidence, and atmospheric visibility of 23 km. In bright sunlight, the max. range is shorter than under overcast sky.

3) Flat terrain assumed, scan angle \(\pm 45°\) FOV

4) If more than one target is hit, the total laser transmitter power is split and, accordingly, the achievable range is reduced.

5) Accuracy is the degree of conformity of a measured quantity to its actual (true) value.

6) Precision, also called reproducibility or repeatability, is the degree to which further measurements show the same result.

7) \(^{1}\) Continuous operation at ambient temperature of \(\geq 30°C \pm 86°F\) requires a minimum amount of air flow of approx. 3 m/s. For applications where a 3 m/s air flow along the cooling fins cannot be guaranteed, the cooling fan has to be used.