The **RIEGL VMQ-1HA** is a compact, economically priced High-Speed Single Scanner Mapping System, well suited for a variety of mobile mapping applications.

The system consists of a measuring head, a compact control unit for system operation, and a special roof mount for convenient mounting. The optional integration of up to four cameras allows simultaneous acquisition of imagery to complement the captured LiDAR data.

The central part of the system is the fully integrated **RIEGL VUX-1HA** LiDAR sensor providing 1 million measurements and up to 250 scan lines per second for an outstanding performance in mobile applications.

High Speed Single Scanner Mobile Mapping System

Typical Applications

- Transportation Infrastructure Mapping
- Road Surface Measurement
- HD mapping for autonomous vehicles
- City Modeling
- Rapid Capture of Construction Sites and Bulk Material
- Open-Pit Mine Surveying
- GIS Mapping and Asset Management
- As-Built Surveying

Use the latest advancements in RIEGL LiDAR Technology for your mobile applications: 1 MHz effective measurement rate 250 scan lines/sec

www.riegl.com

RIEGL LMS GmbH. Austria | RIEGL USA Inc. | RIEGL Japan Ltd. | RIEGL China Ltd. | RIEGL Australia Pty Ltd.
• **RIEGL High-Performance LiDAR Sensor for Mobile Mapping**

Core component of the RIEGL VMQ-1HA is the **kinematic LiDAR Sensor VUX-1HA**. Especially developed for mobile applications, the high-accuracy, high-speed laser scanner offers a maximum effective measurement rate of up to 1 MHz, 5 mm accuracy, 250 scan lines/sec, and a 360 degree “full circle” field of view.

Fully integrated into the measuring head of the VMQ-1HA, the sensor enables acquisition of dense point cloud patterns even with single passes at common traffic speeds. At 80 km/h acquisition speed the typical average point density is about 9 cm line spacing and 6 mm point spacing on the road surface.

• **Camera Interface**

A wide range of cameras can be used with the system including 5-megapixel and 9-megapixel cameras with GigE vision interface for seamless integration into the entire acquisition and processing workflow. Cameras such as high resolution DSLR cameras up to 36-megapixel or the FLIR Ladybug®5+ spherical imaging system can also be integrated to the seamless RIEGL workflow.

• **Multiple Swivel Positions**

By means of the swivel plate the measuring head can be set to seven different pre-defined mounting angles (-45° to +45° in 15° increments). This flexible system configuration allows the generation of different point cloud patterns meeting diverse project requirements. The possibility of scan data acquisition with different horizontal orientation of the measuring head improves the scan pattern especially for multi-pass applications.

• **Seamless RIEGL Workflow**

Seamless RIEGL workflow for MLS data acquisition, processing and adjustment is provided by RIEGL's proven software suite.

RIEGL VMQ-1HA System Block Diagram

![RIEGL VMQ-1HA System Components](image)

RIEGL VMQ-1HA System Components:

- **RIEGL VMQ-MH**
 - Measuring Head
- **RIEGL VMQ-CU**
 - Control Unit
- **VMQ-DMI**
 - Distance Measurement Indicator
- **VMQ-MH**
 - Measuring Head
- **Optional Cameras**
 - e.g. 5 and 9 Mpx
 - e.g. FLIR Ladybug®5+
 - e.g. Nikon D810
- **Power Supply 1**
 - on-board power supply, 12 V DC
- **Power Supply 2**
 - back-up battery, 12 V DC
- **VMQ-DMI**
 - Distance Measurement Indicator
- **RIEGL VMQ-1HA**
 - high-accuracy kinematic LiDAR sensor

Copyright RIEGL Laser Measurement Systems GmbH © 2019– All rights reserved.
RIEGL VMQ-1HA Setup and Components

RIEGL VMQ-1HA Measuring Head
- VMQ-MH Measuring Head
 - Mounting Plate for Ladybug camera
 - Optional components
 - Swivel plate with dovetail-mount for VMQ-MH
 - Protective cover with GNSS antenna
 - VMQ-MH mounting platform

RIEGL VMQ-1HA Measuring Head
- VMQ-RM Roof Mount
 - Swivel plate with dovetail-mount for VMQ-MH
 - Mounting frame

Physical Data

<table>
<thead>
<tr>
<th>VMQ-MH Measuring Head</th>
<th>Main Dimensions (L x W x H)</th>
<th>Weight (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting Frame</td>
<td>496 x 387 x 507 mm</td>
<td>18 kg</td>
</tr>
<tr>
<td>Swivel Plate</td>
<td>1149 x 440 x 110 mm</td>
<td>9 kg</td>
</tr>
<tr>
<td></td>
<td>568 x 514 x 70 mm</td>
<td>13 kg</td>
</tr>
<tr>
<td>VMQ-RM Roof Mount</td>
<td>560 x 455 x 265 mm</td>
<td>26 kg</td>
</tr>
<tr>
<td>VMQ-CU Control Unit</td>
<td>standard length 5 m</td>
<td>8 kg</td>
</tr>
<tr>
<td>VMQ-MC Main Cable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RIEGL VMQ-1HA Technical Data

VMQ-1HA Scanner Performance

<table>
<thead>
<tr>
<th>Laser Class</th>
<th>Laser Class 1 (Class 1 Laser Product according to IEC 60825-1:2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Measurement Rate 1)</td>
<td>300 kHz 500 kHz 750 kHz 1000 kHz</td>
</tr>
<tr>
<td>Max. Range, Target Reflectivity p ≥ 80% 2) 3)</td>
<td>420 m 330 m 270 m 235 m</td>
</tr>
<tr>
<td>Max. Range, Target Reflectivity p ≥ 10% 2) 3)</td>
<td>150 m 120 m 100 m 85 m</td>
</tr>
<tr>
<td>Max. Number of Targets per Pulse</td>
<td>Practically unlimited (details on request)</td>
</tr>
<tr>
<td>Minimum Range</td>
<td>1.2 m</td>
</tr>
<tr>
<td>Accuracy 4) 8) / Precision 5) 8)</td>
<td>5 mm / 3 mm</td>
</tr>
<tr>
<td>Field of View</td>
<td>360° “full circle”</td>
</tr>
<tr>
<td>Scan Speed (selectable)</td>
<td>Up to 250 scans/sec</td>
</tr>
</tbody>
</table>

1) Rounded values, selectable by measurement program.
2) Typical values for average conditions. Maximum range is specified for flat targets with size in excess of the laser beam diameter, perpendicular angle of incidence, and for atmospheric visibility of 23 km. In bright sunlight, the max. range is shorter than under overcast sky.
3) Ambiguity to be resolved by post-processing with RIMM software.
4) Accuracy is the degree of conformity of a measured quantity to its actual (true) value.
5) Precision, also called reproducibility or repeatability, is the degree to which further measurements show the same result.
6) One sigma @ 30 m range under RIEGL test conditions.

IMU/GNSS Performance 7)

<table>
<thead>
<tr>
<th>IMU (Option A)</th>
<th>IMU (Option B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Accuracy (absolute)</td>
<td>Typ. 20 - 50 mm</td>
</tr>
<tr>
<td>Roll & Pitch Accuracy</td>
<td>0.015°</td>
</tr>
<tr>
<td>Heading Accuracy</td>
<td>0.05° / 0.025° 8)</td>
</tr>
</tbody>
</table>

7) One sigma values, no GNSS outage, with DMI option, post-processed using base station data.
8) Improved heading accuracy with dual antenna option @ 2 m baseline.

Electrical Data

| **Power Supply Input Voltage** | 11 - 15 V DC |
| **Power Consumption** | Typ. 200 W (max. 260 W) 9) |

9) with 2 x 9 MPx Camera

Interfaces

Measuring Head (VMQ-MH)
- 4 x trigger pulse, exposure pulse, NMEA data (e.g. for optional cameras or additional devices)
- 1 x PPS out pulse for synchronization of additional device
- 2 x LAN, 1000 Mbit/sec for data transfer to control unit of external devices (e.g. image data acquisition)
- 1 x secondary antenna connector for GPS azimuth measurement subsystem

Control Unit (VMQ-CU)
- 1 x DMI input (for distance measuring indicator, odometer)
- 1 x synchronization output NMEA + PPS (for synchronization of additional device)
- 1 x NAV RS232 (COM port for IMU/GNSS for RTK, SBAS)
- 1 x LAN, 1000 Mbit/sec (e.g. connect additional computer)
- 2 x USB 3.0 (e.g. image data transfer from FLIR Ladybug®5)
- 1 x touch screen incl. USB (for system operation)
- 1 x DVI (additional video output of main system PC)

VMQ-MC Main Cable (single cable connection between VMQ-MH and VMQ-CU)

Further Information

[RIEGL VUX-1HA Data Sheet](#)
[RiACQUIRE Data Sheet](#)
[RiPROCESS Data Sheet](#)
[RiWORLD Data Sheet](#)
[RiPRECISION MLS Brochure](#)

Watch our videos on youtube.com/riegllms

Copyright RIEGL Laser Measurement Systems GmbH © 2019 – All rights reserved. Use of this data sheet other than for personal purposes requires RIEGL written consent. This data sheet is compiled with care. However, errors cannot be fully excluded and alterations might be necessary.

www.riegl.com