RIEGL’s VUX-1HA High Accuracy kinematic LiDAR sensor is a very high speed, non-contact profile measuring system using a narrow laser beam and a fast line scanning mechanism, enabling full 360 degree beam deflection without any gaps.

High performance pulsed laser ranging, based on RIEGL’s well-proven echo signal digitization technology with subsequent online waveform processing results in superior measurement capabilities even under adverse atmospheric conditions and in excellent multiple target echo discrimination.

The RIEGL VUX-1HA is a compact and lightweight laser scanner, mountable in any orientation and even under limited space conditions on land based vehicles, tunnel measuring devices, watercraft, etc.

The instrument needs only one power supply and provides line scan data via the integrated LAN-TCP/IP interface. The binary data stream can easily be decoded by user-designed software making use of the available software library RiVLib.

Typical MLS applications include

ROAD:
- Transportation Infrastructure Mapping
- Road Surface Measurement
- HD Mapping for Autonomous Vehicles
- City Modeling
- GIS Mapping and Asset Management
- As-Built Surveying

RAIL:
- Rapid and Safe Data Capture with Minimal Disruption to Network Schedules
- Track and Infrastructure Monitoring
- Clash Detection Simulation and Clearance Analysis

• very high measurement rate up to 1,000,000 meas./sec
• very high scan speed up to 250 scans / second
• 5 mm survey-grade accuracy
• field of view 360° for unrestricted data acquisition
• regular point pattern, perfectly parallel scan lines
• cutting edge RIEGL technology providing:
 - echo signal digitization
 - online waveform processing
 - multiple-time-around processing
• multiple target capability - practically unlimited number of target echoes
• NEW Smart Waveform Data Output optional
• compact (227x180x125 mm), lightweight (3.5 kg), and rugged
• user-friendly mounting
• mechanical and electrical interface for IMU mounting
• electrical interfaces for GPS data string and sync pulse (1PPS)
• LAN-TCP/IP interface
• scan data storage on internal 240 GByte SSD memory

visit our website
www.riegl.com
Technical Data RIEGL VUX®-1HA

Laser Product Classification
Class 1 Laser Product according to IEC 60825-1:2014
The following clause applies for instruments delivered into the United States: Complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed.3., as described in Laser Notice No. 56, dated May 8, 2019.

Range Measurement Performance
Measuring Principle
time of flight measurement, echo signal digitization, online waveform processing, multiple-time-around-capability

<table>
<thead>
<tr>
<th>Laser Pulse Repetition Rate PRR 1)</th>
<th>300 kHz</th>
<th>500 kHz</th>
<th>750 kHz</th>
<th>1000 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Measuring Range 2) 3)</td>
<td>150 m</td>
<td>120 m</td>
<td>100 m</td>
<td>85 m</td>
</tr>
<tr>
<td>natural targets (\rho \geq 10 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural targets (\rho \geq 80 %)</td>
<td>420 m</td>
<td>330 m</td>
<td>270 m</td>
<td>235 m</td>
</tr>
<tr>
<td>Max. Number of Targets per Pulse 4)</td>
<td>practically unlimited (details on request)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Rounded values.
2) Typical values for average conditions. Maximum range is specified for flat targets with size in excess of the laser beam diameter, perpendicular angle of incidence, and for atmospheric visibility of 23 km. In bright sunlight, the max. range is shorter than under overcast sky.
3) Ambiguity to be resolved by post-processing with RiMTA software.
4) If more than one target is hit, the total laser transmitter power is split and, accordingly, the achievable range is reduced.

Minimum Range
1.2 m
Accuracy 5) 7)
5 mm
Precision 6)
3 mm
Laser Pulse Repetition Rate 1) 8)
up to 1000 kHz
Max. Effective Measurement Rate 1)
up to 1 000 000 meas./sec. (@ 1000 kHz PRR & 360° FOV)
for each echo signal, high-resolution 16 bit intensity information is provided near infrared
Echo Signal Intensity
Laser Wavelength near infrared
Laser Beam Divergence 0.5 mrad 9)
Laser Beam Footprint (Gaussian Beam Definition)
4.5 mm @ exit, 5 mm @ 5 m, 6.6 mm @ 10 m, 13 mm @ 25 m, 25 mm @ 50 m, 50 mm @ 100 m

5) Accuracy is the degree of conformity of a measured quantity to its actual (true) value.
6) Precision, also called reproducibility or repeatability, is the degree to which further measurements show the same result.
7) One sigma @ 30 m range under RIEGL test conditions.
8) User selectable.
9) Measured at the 1/e² points. 0.50 mrad corresponds to an increase of 50 mm of beam diameter per 100 m distance.

Scanner Performance
Scanning Mechanism
rotating mirror
Field of View (selectable)
360° „full circle“
Scan Speed (selectable)
10 - 250 revolutions per second, equivalent to 10 - 250 scans/sec
Angular Step Width Δ \(\theta \) (selectable)
0.0036° \(\leq \Delta \theta \leq 0.3° \)
between consecutive laser shots
Angle Measurement Resolution
0.001°
Internal Sync Timer
for real-time synchronized time stamping of scan data
Scan Sync (optional)
scanner rotation synchronization
Smart Waveform Data Output (optional)
providing digitized echo signal information for specific target echoes

Data Interfaces
Configuration LAN 10/100/1000 Mbit/sec
Scan Data Output LAN 10/100/1000 Mbit/sec or USB 2.0
GNSS Interface Serial RS232 interface for data string with GNSS-time information,
TTL input for 1PPS synchronization pulse
240 GByte SSD
TTL input/output
SMA connector
Internal Memory
External Camera
External GNSS Antenna

General Technical Data
Power Supply Input Voltage / Consumption 10)
Main Dimensions 10)
VUX-HA without / with Cooling Fan
Weight 10)
VUX-HA without / with Cooling Fan
Humidity
Protection Class
Temperature Range 11)
11 - 34 V DC / typ. 65 W
110 - 220 V AC / 50 - 60 Hz
227 x 180 x 125 mm / 227 x 209 x 129 mm
approx. 3.5 kg / approx. 3.75 kg
max. 80 % non condensing @ 31°C
IP64, dust and splash-proof
-10°C up to +40°C (operation) / -20°C up to +50°C (storage)

10) without external IMU/GNSS, cooling fan not in operation
11) the instrument requires air convection with a minimum flow rate of 5 m/s for continuous operation at +15 °C and above. If the necessary flow rate cannot be provided by the moving platform, the cooling fan (included in the scope of delivery) has to be used.

Copyright RIEGL Laser Measurement Systems GmbH © 2019 – All rights reserved.
RIEGL VUX®-1HA Additional Equipment and Integration

Additional Equipment for RIEGL VUX-1HA

Cooling Fan
Lightweight structure with two axial fans providing forced air convection for applications where sufficient natural air flow cannot be guaranteed. Power supply is provided via a connector on the rear side of the RIEGL VUX-1HA. The cooling fan can be mounted either on the top side or on the bottom side of the RIEGL VUX-1HA and is included in the scanner’s scope of delivery. The cooling fan has to be mounted whenever the environmental conditions/temperatures require the use (see “temperature range” on page 2 of this data sheet).

Protective Cap
To shield the glass tube of the RIEGL VUX-1HA from mechanical damage and soiling, a protective cap is provided to cover the upper part of the instrument during transport and storage.

Options for RIEGL VUX-1HA Integration
RIEGL is developing user-friendly, application- and installation-specific solutions for integration of the VUX-1HA LiDAR sensor into whatsoever type of moving platform.
Dimensional Drawings RIEGL VUX®-1HA

all dimensions in mm

beam aperture window

heat sink fins

4x M6x1 - 6H threads, depth 8 mm

4x M6x1 - 6H threads, depth 8 mm

RIEGL VUX®-1HA with Cooling Fan Device